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The familiar generating functionals in quantum field theory fail to be true 
measures and make sense only in framework of perturbation theory. In our 
approach, generating functionals are defined strictly as the Fourier transforms 
of Gaussian measures in nuclear spaces of multimomentum canonical variables 
when field momenta correspond to derivatives of fields with respect to all world 
coordinates, not only to time. 

1. I N T R O D U C T I O N  

Contemporary  field models almost always have constraints. In order 
to describe them, one can apply the covariant mult imomentum generaliza- 
tion of the Hamiltonian formalism in mechanics (Sardanashvily and Za- 
kharov, 1992a, b, 1993). The mul t imomentum canonical variables are field 
functions ~b i and momenta  p~- associated with derivatives of  ~b i with respect 
to all world coordinates x ", not only the time. 

In classical field theory, if a Lagrangian density is degenerate, the 
system of  the Euler -Lagrange  equations becomes underdetermined and 
requires additional conditions. In gauge theory, these are gauge conditions 
which single out a representative from each gauge class. In the general case, 
the above-mentioned supplementary conditions remain elusive. In the 
framework of the mul t imomentum Hamiltonian formalism, one obtains 
them automatically because a part  o f  the Hamil ton equations play the role 
of  gauge conditions. The key point consists in the fact that, given a 
degenerate Lagrangian density, one must consider a family of  associated 
mul t imomentum Hamiltonian forms in order to exhaust solutions of  the 
Eule r -Lagrange  equations (Sardanashvily and Zakharov,  1993). There 
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exist comprehensive relations between Lagrangian and multimomentum 
Hamiltonian formalisms for degenerate quadratic and anne densities. Most 
field models are of these types. As a result, we get a general procedure of 
describing constraint systems in classical field theory. 

The present work is devoted to the multimomentum quantum field 
theory. This theory, like the well-known current algebra models, has been 
hampered by the lack of satisfactory commutation relations between multi- 
momentum canonical variables (Gfinter, 1987; Carifiena et al., 1991). We 
base this work on the fact that the operation of chronological product of 
quantum bosonic fields is commutative and so Euclidean chronological 
forms can be represented by states on commutative tensor algebras. There- 
fore, restricting our consideration to generating functionals of Green 
functions, we can overcome the difficulties of establishing the multimomen- 
turn commutation relations. 

Moreover, the multimomentum quantum field theory may incorporate 
the canonical and algebraic approaches to the quantization of fields. In 
physical models, the familiar expression 

of a generating functional fails to be a true measure since the Lebesgue 
measure in infinite-dimensional linear spaces is not defined in general. 

In algebraic quantum field theory, generating functionals of chrono- 
logical forms result from the Wick rotation of the Fourier transforms of 
Gaussian measures in the duals to nuclear spaces (Sardanashvily and 
Zakharov, 1991; Sardanashvily, 1991). The problem has consisted in con- 
structing such measures. In the present work, we get these measures in 
terms of multimomentum canonical variables. They have the universal 
form due to the canonical splitting of multimomentum Hamiltonian forms. 
In particular, we reproduce the Euclidean propagators of scalar fields and 
gauge potentials. Note that the covariant multimomentum canonical quan- 
tization can be generalized to any field model with a degenerate quadratic 
Lagrangian density. 

2. MULTIMOMENTUM HAMILTONIAN FORMALISM 

We consider the multimomentum generalization of the familiar Hamil- 
tonian formalism to fibered manifolds g: E -~ X over an n-dimensional base 
X, not only X = ~. If sections of E describe classical fields, one can apply 
this formalism to field theory. In this case, the Legendre manifold 

r*x | rx  | v*E 
E E 
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plays the role of the finite-dimensional phase space of fields. By V E  and 
V * E  are meant the vertical tangent and cotangent bundles over a fibered 
manifold E. Given an atlas of fibered coordinates (xU, y i) of E, the 
Legendre manifold is provided with the linear adapted coordinates 
(x< yi, p~). In these coordinates, a multimomentum Hamiltonian form on 
I-I and the corresponding Hamilton equations read 

H = p ~ ' d f f  A O 9 ; - ~ o 9  = p ~ ' d y i A ~ o ~ - p ~ ' F ~ o g - ~  (2) 

d~.y" = 0 ~ ,  0).p]" = -0 ,~ff  (3) 

( o = d X l  A " ' '  A dx  n, ~ :O~. jm 

where F is a connection on E and ~ is a horizontal density on II ~ X. 
The multimomentum Hamiltonian formalism is associated with the 

Lagrangian formalism in jet manifolds where the jet manifold J1E  of E 
plays the role of a finite-dimensional configuration space (Bauderon, 1982; 
Giachetta and Mangiarotti, 1989). The jet manifold j 1 E  comprises classes 
j l~ of sections ~b of E which are identified by the first two terms of their 
Taylor series at points x. It is provided with the adapted coordinates 
(x~., yi, y~.), where 

A first-order Lagrangian density L = ~s y~.)~o on J l E  defines 
the Legendre morphism s of J1E  to I-I: 

( x ", y ', p f ) o I~ = ( x" ,  y ', . . . .  =, ~" ), = ,;" = O f .SP 

Conversely, a multimomentum Hamiltonian form H on YI defines the 
momentum morphism/1  of H to J IE :  

( X 2  i i o = ' " y , y J  O (x<y',ai~) 

We say that a multimomentum Hamiltonian form H is associated with a 
Lagrangian density L if 

s ~[Q = Id Q, Q = f ~ J ~ E )  

In general, different multimomentum Hamiltonian forms may be associated 
with the same Lagrangian density. Most field models meet the following 
relations between Lagrangian and multimomentum Hamiltonian formal- 
isms. 

(i) All multimomentum Hamiltonian forms H associated with a La- 
grangian density L are equal to each other on the constraint space Q, that 



2368 Sardanashvily 

is, Hie = HL. Moreover, for every section ~b of E, we have 

(f~ oj '(o)*(nL) = (j~(a)*(L) --- L(q~) (4) 

(ii) If a solution r of the Hamilton equations (3) corresponding to a 
multimomentum Hamiltonian form H associated with a Lagrangian den- 
sity L belongs to the constraint space Q, then /q o r is a solution of the 
Euler-Lagrange equations for L. Conversely, for each local solution s of 
the Euler-Lagrange equations defined by a Lagrangian density L, there 
exists an associated multimomentum Hamiltonian form such that s o s is a 
solution of the corresponding Hamilton equations. 

The relation (4) gives us the reason to use sections r of the Legendre 
manifold H ~ X as functional variables in quantum field theory. On the 
physical level, one can consider the naive generating functional 

Z=N-'fexplif(r*H+~i(a~oo+~,p~cn)l~x[dqS~(x)][dp~(x)]. (5) 

r* H = (p~' (x) a,,~'(x) - ~)o9 

Note that the canonical splitting (2) of multimomentum Hamiltonian 
forms leads to standard terms p~' 8t, c~ ~ in generating functionals in multimo- 
mentum canonical variables. 

The generating functional (5) fails to be a true measure. The problem 
of representation of generating functional by measures can be settled in the 
framework of algebraic quantum field theory (Sardanashvily and Za- 
kharov, 1991; Sardanashvily, 1991). 

3. ALGEBRAIC QUANTUM FIELD THEORY 

In accordance with the algebraic approach, a quantum field system can 
be characterized by a topological *-algebra A and by a continuous state f 
on A. To describe particles, one considers usually a tensor algebra A.  of a 
real, linear, locally convex topological space �9 endowed with the involution 
operation. We further assume that ~ is a nuclear space. 

In the axiomatic quantum field theory of real scalar fields, the quan- 
tum field algebra is A.  with �9 = ~$4. By AS., is meant the real subspace 
of the nuclear Schwartz space S(~'") of complex functions ~b(x) on [~m such 
that 

= m a x s u p ( l + l X l ) ~ ( # x ' )  " ' '  ' (Sx ')  .... II llk., H . . . . . .  O(x), 

is finite for any collection (~ . . . . .  ~,,,) and all l, k~7/->~ A state f o r t  A~s, 
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is represented by a family of  temperature distributions W.eS'(R4"):  

~Pn) = .i Wn(xI . . . . .  Xn)f~l ( x l ) ' ' "  q~n(Xn) d4x ' ' ' "  d4Xn f(dp, . . . 

If f obeys the Wightman axioms, W. are the familiar n-point Wightman 
functions. 

To describe particles created at some moment and destructed at 
another moment, one uses the chronological forms f c  given by 

w~(x,  . . . . .  x . )  = E O(x o, _ ~ o ) . . .  o(~oo_, _ ~oi.)W.(x, . . . . .  ~.) (6) 
(i t ""in) 

where (i~ �9 �9 i,,) is a rearrangement of numbers l . . . . .  n. The forms (6) fail 
to be distributions and do not define a state on Aas4.  At the same time, 
they issue from the Wick rotation of  the Euclidean states on ARs4 describ- 
ing particles in the interaction zone. 

Since chronological forms (6) are symmetric, Euclidean forms can be 
introduced as states on a commutative tensor algebra. Note that they differ 
from the Schwinger functions associated with the Wightman functions. 

Let B~, be the commutative quotient of  A~,. This algebra can be 
regarded as the enveloping algebra of  the Lie algebra associated with the 
Lie commutative group G| of  translations inO. We therefore can construct 
a state on the algebra B| as a vector form of its cyclic representation 
induced by a strong-continuous unitary cyclic representation of  G. .  Such a 
representation is characterized by a positive-type continuous generating 
function Z on r that is, 

Z ( ~  i - -  ~j)o~i~ j ~ O, Z(O) ~--- l 

for all collections of  ~b~,. . . ,  q~. and complex numbers ~ . . . . .  ~". If  the 
function ~ ~Z(a~b) on R is analytic at 0 for each ~ O ,  the positive 
continuous form F on B .  is given by 

F.(~bl �9 �9 �9 4~.) = i -"  ~ ! a~ - - ~ "  a ; z(~ '~ ,  )l., = o 

In virtue of  a well-known theorem (Gelfand and Vilenkin, 1964), any 
function Z of  the above-mentioned type is the Fourier transform of a 
positive bounded measure # in the dual O' to O: 

Z(q~) = f,~, exp[i<w, ~b)] dp(w)  (7) 

where ( , > denotes the contraction between O' and O. The corresponding 
representation of  Go is given by operators 

g(~b): u(w) ~ e x p [ i < w ,  ~>]u(w) 
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in the space of quadratically #-integrable functions u(w) on 0 ' ,  and we have 

F.(r~l . . . dp.) = f (w, gPl ) " " (w, ~ .  ) d#(w) 

For instance, a generating function Z of a Gaussian state F on B.  reads 

where the covariance form A(4~, 4~2) is a positive-definite Hermitian bilinear 
form on O, continuous in 4~ and q~2. This generating function is the Fourier 
transform of a Gaussian measure in q~'. The forms F. > 2 obey the Wick rules, 
where 

F, = 0, F2(4~,, q~2) = A(~l, ~2) 

In particular, ifO = RS., the covariance form o fa  Gaussian state is uniquely 
defined by a distribution WeS'(R2"): 

A((/}I , (/)2) = f W(Xl, X2)~l (Xl)~2(X2) dnXl d"x2 

In field models, a generating function Z plays the role of a generating 
functional represented by the functional integral (7). If Z is the Gaussian 
generating function (8), its covariance form A defines Euclidean propaga- 
tors. Propagators of fields in the Minkowski space are reconstructed by the 
Wick rotation of A (see appendix). 

4. SCALAR FIELDS 

Let E be a vector bundle over a world manifold X a. Its sections describe 
scalar matter fields. In jet terms, their Lagrangian density reads 

L~m) = ~ a~[gUV( y~u - F~)(y~ - F~) - mZyiyJ ][g[~/2o~ 

F~ = Fu~.(x)y, g = det guy 

where a e is a fiber metric in E, F is a linear connection on E, and g is a 
world metric on X 4. Because of the canonical vertical splitting VE = E x E, 
the corresponding Legendre manifold (1) is 

E E 

The Legendre morphism/~t,-) and the unique multimomentum Hamiltonian 
form associated with the Lagrangian density Lcm ) are given by the expres- 
sions 
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p]" o L'(. 0 = g;~a~(y~ - F~) 

(9) 
, 1 .. 1 g(m ) .~- p~" dy i A (.l)). -- p~: - ~ (a~guvp fp  ~ [g[- + mZa~y'y j)  [g[ '/2co 

where ag is the fiber metric in E* dual to a E. 
For the sake of simplicity, we here examine scalar fields without sym- 

metries. Let q~ be real Euclidean scalar fields on the Euclidean space X = It~ 4. 
The corresponding Legendre manifold 

is provided with the adapted coordinates (z'. 37,/~.). Sections r of 1] are 
represented by functions (q~(z)./~'(z)) on •4 which take their values in the 
vector space 

Their commutative tensor algebra is B.,  where �9 = V | NS4. The scalar 
form 

(rlr). = f + q  (z)l d4z 

brings �9 into the rigged Hilbert space. Let 

1 

be the multimomentum Hamiltonian form describing Euclidean scalar fields. 
The covariance form A of the associated generating function is defined by 
the relation 

f 2r*H(m = (r[?r>. = -A(?r ,  ?r), r ~  (10) 

where 7 is the first-order linear differential operator on q). We have 

f l  OAr OAp A(r. r) = Ar(Zl. z2)q~(z,)c~(z2) + fi~'(z,) ~z~ q~(z2) + q~(z,) ~z~ fiU(z:) 

+ --3.v3 (z,--z2) + ~ ) p  (zi)fiV(z2) d4z, d4z2 ( l l )  

Ar(z~, z2) = fAr(q)  exp[iq(z, - z2)] d,,q, At(q) = (m 2 + 6J'Vq~,qv) - i  

where Ar is the Feynman propagator of Euclidean scalar fields. 
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Remark. The Schwartz space S(R  m) is the dense subset of S'(Rm), 
Being continuous on S.~, the scalar form ( [ ) s m  and the covariance 
forms A have no continuous prolongation to S'(Rm). In practice, one 
can consider prolongation of chronological forms to elements of 
S'(Rm)\S(R') ,  which are the generalized eigenvectors of translation opera- 
tors if the corresponding integrals converge. 

5. GAUGE THEORY 

Let P ~ ~ i  " 4  be a principal bundle with a structure Lie group G of 
internal symmetries. There is the 1:1 correspondence between principal 
connections on P and global sections A c of the affine bundle C = J~P/G 
modeled on the vector bundle 

= T ' X |  VrP,  VaP = VP/G (12) 

The bundle C is provided with the fibered coordinates (x ~, k~') such that its 
section A c has the coordinate expression 

(k~  o A C)(x) = AT(x) 

where A"~(x) are coefficients of a local connection 1-form. In gauge theory, 
sections A c are treated as gauge potentials. 

The configuration space of gauge potentials is the jet manifold J~C. It 
is provided with the adapted coordinates (x u, k~', k.%.). There exists the 
canonical splitting 

c (13) 
r n  m m ~ m ~ m m tl I m m i m n l (k ,  , s~ ,  J:;.,) - (k~ , k~;~ + k ;.. + c.tk ;k~, k~;. - k z, - c.tk ;ku) 

where c.~ are the structure constants of the Lie algebra g of the group G. 
In the coordinates (13), the conventional Yang-Mills Lagrangian density 
L~.~) of gauge potentials is given by the expression 

LeA) ~ a  o2,uoflvo'~m~n 1~11/2.., (14) 
~ "  ~ m n , 5  r c "  2 f l ~ "  .uv 1/5 ] t~ ,  

where a a is a G.invariant metric in the Lie algebra g and g is a world 
metric on X 4. 

For gauge potentials, we have the Legendre manifold 
4 

H =  A T* X  | TX  ( ~  [C x C]* 
C 

provided with the canonical coordinates (x ~', k m n~'z~ This is a phase space " ' / /  , / - ' r n  l "  
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of gauge potentials. It also has the canonical splitting 

P~m:" = P~:') + P~)'] 1 . 1 = ~ (P~m ~ + p~,") + 5 (P~2 ~ - p~,.) 

The fibered manifold 17 ~ X  is the affine bundle modeled on the vector 
bundle 

4 

A r , x |  v*c- - ,x  (151 
( 

The Legendre morphism corresponding to the Lagrangian density (14) 
is 

p~:') ~ L"(A) = 0 (16a) 

p w:.lo L~A) = a m~. g :~g " ~ " ,  ]g] 1/2 (16b) 

The multimomentum Hamiltonian forms associated with the Lagrangian 
density (14) read 

H B  = n~'~ d k m  D'u)'~ T M  O) `@gO r m  -"-Ia A f.O 2 - - t ' m  - -#2  W - -  

1 `@ = _ .,~ . . . .  t~;.i. [va] I01- ~/z (17) 4 , , G  6 , a v 6 2 f l F m  1Jn I'~;I 

- m  1 r..,ml~,,b' q_ O, B 7  + O ; B  7 m ,, , " ' F~.(B~' k : B . ) ]  - k '~)  = _ c . l ( k u B  ~ + - I". u2 2 tLnl"~Z'~l t  

where B is some section of C, F is a connection on C, and F~;~ are 
Christoffel symbols of world metric g. We have 

1 _ t , % m k T U c o  .@co H.] o =-p~:'Idk'~ ^ co:. --~I-',. ,,, . . - 

The Hamilton equations corresponding to the multimomentum Hamil- 
tonian form (17) read 

~:.p~ = ..n ~/,.~I :,, ~/.,(.v) _ F/~ n(:~) (18) - - ~ l m ~ v F n  "q- t 'm l~UvFn  2vk 'm  

m __ - - rn  ( 1 9 )  c3:k'~ + ~.k:. - 2F~u:. ) 

plus equation (16b). On the constraint space (16a), equations (16b) and 
(18) are the familiar Yang-Mills equations. Equation (19) plays the role of 
gauge condition. 

In algebraic quantum field theory, only fields forming a linear space 
are quantized. We therefore fix a background gauge potential B and 
consider deviation fields fl = A c -  B which are sections of the vector 
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bundle (12). The corresponding Legendre bundle (15) is endowed with the 
adapted coordinates 

/~m n~":'~ ( x  ~,  m m ~ (x ~, . . . ,  ~ . ~ ,  = k .  - B u (x), Pm)  (20) 

Sections r of the Legendre bundle (15) over the Euclidean space [~4 a r e  
represented by functions (~"~(z),p"m;'(Z)) taking their values in the vector 
space 

F = ( A  [~4 @ "8 ~) g*) • ("4 ~) g) 

The commutative tensor algebra of r is B , ,  where ~ = F |  The 
nuclear space �9 is provided with the corresponding scalar form ([)~, ,  
which brings q) into the rigged Hilbert space. 

To define a Gaussian state on this algebra, let us consider the 
multimomentum Hamiltonian form (17). In the coordinates (20), it reads 

Er B = ,,.~ afro " _ ~m - - - .  A ~0;. --p~"PT~CO aFBCo 

~ B  = 1 . . . . . . .  [~;.]Mv/~]l.I 1/2 • 1 _[,alr~ m 

- m _ m . .  F '  + r ~ / 7 7  F B p 2 - -  C nl.t~ )j,., ,u 

where ~-B is the strength for the background gauge potential B, and F~ is 
a connection on C associated with the principal connection B. One can use 
the multimomentum Hamiltonian form (21) in order to quantize the 
deviation fields ~ on X = ~ 4 .  

For the sake of simplicity, let us assume that the structure group G is 
compact and simple (a~" = -26"") .  We have 

1 (~ (~ (~ m n n  [,u).] ~ [vfl] ,uA m 1 r*HB = r ' H 1  + r ' H 2  = L~ ~ ~.~ I'm I ' .  +Pro V.:.~r2v -, d4z 

- - 2 P r o  ~, Bit). "31- c,3kr'~f~) d4z (22) 

where V denotes the covariant derivative corresponding to the principal 
connection B. 

To construct the associated Gaussian state, we use the quadratic part 
r*H~ of the form (22). The term r ' H 2  describes interaction considered by 
the perturbation theory. 

The scalar form ~ r*H~ on @, however, is degenerate. There are two 
ways for this difficulty to be overcome. 

(i) In accordance with the conventional quantization scheme, we can 
restrict ourselves to sections r taking values in the constraint space (16a). 
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Since the form 

1 r,~ ,~ a . . . .  [~;.l~Ival + p ~ ; 4 g ~ ]  d4z r*/4s = ~ eJ~v,,~.av Vm ~'n 

1 _ [~;'�93 m ( ~ n  = r*Ho - ~lJm ,,,, ~. + BT)(O~ + B~) d4z (23) 

is degenerate, we must then consider the gauge orbit space Ea, which is the 
quotient space E of  connections A c by the group of gauge transformations. 
There exists a neighborhood N centered at the image of  B in Ea such that 
there is a local section s~: N ~ E whose values are elements A c~E satisfy- 
ing the gauge condition 

6~"V~(A f - B~) = 0 

(Mitter and Viallet, 1981). Hence, N is locally isomorphic to a Hilbert 
space. Neglecting here the Gribov ambiguity problem, let us assume that 
there exists a connection B such that sB is a global section. I f  the bilinear 
part  r*Ho of  the form (23) induces a nuclear scalar form on - a ,  one can 
construct the associated Gaussian measure # in Ea. I f  s~ is a #-measurable 
morphism, there exists a measure P6F in E which is the image of p with 
respect to sB. I f  this measure exists, it is concentrated in SB(EG) c E. We 
call it the gauge-fixing measure. In contrast with the naive expressions used 
in the gauge models, it is not the measure whose base is a Gaussian 
measure and density is the F a d d e e v - P o p o v  determinant. Determinant 
densities are attributes of  Lebesgue measures, which fail to be defined in 
the general case. 

(ii) The first procedure fails for the general case of  degenerate field 
systems, without gauge invariance. At the same time, one can insert 
additional terms quadratic in p~V) into the mult imomentum Hamiltonian 
form (21) which bring ~ r*H~ into a nondegenerate scalar form. In the 
general case, we have 

_, 1 r~, .~ .~ .~mnn(.u)~)r~(vfl) H~ = / t ~  - he), h = ~ t,'l v~v~,;.~v ~,~ t,~ + a2(p,~) 2] (24) 

where a~ ~ 0 and a2 are some constants. The Lagrangian L~A > associated 
with the mul t imomentum Hamiltonian form (24) includes additional terms 

-m . . . .  t I f  the quadratic form ~ r*H~ is nondegener- quadratic in k(~) + cnttc(jJv). 
ate, one can use a relation similar to the relation (10) in order to construct 
the covariance form AB of  the associated Gaussian generating function ZB. 

For  instance, if a~ = 1 and a2 = O, we have 

F 1 X x Xmn.M,.~/? -] d4g 
J 
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The associated covariance form AB exists. In particular, it defines the 
propagator of Euclidean deviation fields f~ which coincides with the Green's 
operator of the covariant Laplacian 6"WuV~. This Green's operator exists 
(Mitter and Viallet, 1981). In the case of B = 0, the propagator of deviation 
fields fl coincides with the familiar propagator of gauge potential which 
corresponds to the Feynman gauge (e = 1), but there are no ghost fields. In 
comparison with the measure #aF, the Gaussian measure/~B defined by the 
generating function ZB is not concentrated in a gauge-fixing subset. 

Note that, after gauge transformations B ~ B', measures/~B and #B. are 
not equivalent in general. This means that a gauge phase of a background 
gauge potential may be valid, otherwise electromagnetic potentials. In the 
case of an Abelian structure group G, the multimomentum Hamiltonian 
form (23), the associated covariance form AB, and the Gaussian measure #B 
are independent of a background potential B. 

A P P E N D I X  

We use the Fourier-Laplace (FL) transforms in order to construct 
strictly the Wick rotation. 

- - n  
Remark. By R"+ and ~+ we denote the subset of N" with the Cartesian 

coordinates x " > 0  and its closure, respectively. Elements of S ( ~ )  are 
q~S([R') such that ~b = 0  on N"\~%. Elements of S(~_) correspond to 

- ,  
distributions WeS'(N") with supp W c N+. 

Given WeS'(N'),  let Qw be the set of qeN, such that 
exp(-qx)WeS'(N").  The FL transform of W is defined to be the Fourier 
transform 

wFL(k + iq) = [exp(-  qx)W]F= fexp[i(k + iq)x] W d'x eS'(N,) 

It is a holomorphic function on the tabular set R, + iQw c C, over the 
interiority of Q w. Moreover, it defines the family of distributions 
WFL(k)eS'(N,) which is continuous in the parameter q. In particular, if 

f ~ n  WeS (N+), then ~+, c Qw and W FL is a holomorphic function on the 
tubular set N, + iN+,, so that wFL(k + iO) = WF(k), i.e., 

lim FL ( W q  , ~)) = ( m  F, ~ ) ,  ~ ) (k )eg(~n)  

Let W FL (k + iq) be the FL transform of some distribution We S'(~_ ). 
Then, the relation 

fR wFL(iq)~)(q)d'q=f W(x)~(x)d'x' 4) ~S(N+') 
+, e% (A1) 

(~(x) = [ exp(-qx) 4)(q) d,,q, xe~"+, ~eS(fr 
jor +n 
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defines the continuous linear functional WL(q) = wFL(iq) on S(R+.). It is 
called the Laplace transform. The image of S(•+.) under the continuous 
morphism r ~ is dense in S(~_),  and the norms [[r = [Iq~[lka induce 
the weakening topology in S(g~+.). The functional WL(q), (A1), is contin- 
uous with respect to this topology. There is a 1:1 correspondence between 
Laplace transforms of elements of S ' (~_ ) and elements of S'(R+.) contin- 
uous with respect to the weakening topology in S(R+.). We use this 
correspondence in order to construct the Wick rotation. 

If the Minkowski space is identified with the real subspace •4 of C 4, its 
Euclidean partner is the subspace (iz ~ x L2'3) of C 4. These spaces have the 
same spatial coordinate subspace (x~'2'3). For the sake of simplicity, we 
henceforth do not write the spatial coordinate dependence. We consider 
the complex plane C ~ = X @ i Z  of time x and Euclidean time z and 
the complex plane C~ = K ~  iQ of the associated momentum Coordinates k 
and q. 

Let W(q)eS'(Q) be a distribution such that 

w = w+ + w_,  w+ es ' (Q+ ), 

For every r e S(X+ ), we have 

;o+ 

W_ ES((Q_ ) (A2) 

( ,  [ .  
W(q)q~ + (q) dq = __J6 + dq _.Ix+ dx [W(q)exp(-qx)r  (x)] 

=f +aqf, akfx+axEW(q)r 

= t -  W(q)r (iq)dq (h3) 
dO. + 

due to the fact that the FL transform CFL(k + iq) of r ~S(X+ ) = S'(X+ ) 
exists and it is holomorphic on the tubular set K + iQ+, Q+ c Qr +, so 
that r F+L(k + i0) = r r+ (k). The function q~+ (q) = r F+L(_ q) can be regarded 
as the Wick rotation of r (x). The relations (A3)take the form 

fo § W(q)~+ (q) dq= fx + g~§ (x)r § (x) dx 
(A4) 

if'+ (x) = f~ exp(-qx)W(q)dq,  x~X+ 
+ 

where if'+ (x)eS'(X+ ) is continuous with respect to the weakening topol- 
ogy in S(X+ ). 
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For every ~b_ eS(X_ ), we have the similar relations 

~_ W(q)~-(q) dq = fx_ lYV-(x)dp- (x) dx 
(AS) P 

IF'_ (x) = [ :  exp( - qx) W(q) dq, x e X_ 
did 

The combination of (A4) and (A5) results in the relation 

fo W(q)q~q) dq = fx lg"(x)r 
(A6) 

6=r247  $=$++$_ 
where if(x) is a linear functional on functions ~b eS(X) such that r and all 
its derivatives are equal to zero at x =0 .  This functional can be regarded 
as a functional on S(X), but it needs additional definition at x = 0. This is 
the well-known feature of chronological forms in quantum field theory. We 
can treat # as the Wick rotation of W. 

For instance, let the covariance form A of a Gaussian state on the 
commutative algebra of Euclidean scalar fields q~ be given by a distribution 
ff '(z~- z2). We have 

f gj, r(Z 1 --Z2)~l(ZI)~2(Z2) dZl az 2 

= f~ ( z )6 ,  (z,)6~(z, - z) az, d~ 

= f ~(z)7(z) az 

= fff:(q):F(q) dq 

- Z2, l = j" $, (Z')~2(Z, -- ~) dz, Z Z l 

Let #F(q) satisfy the condition (26). Its Wick rotation (30) defines the 
functional 

~(x) = O(x) f= ffF(q) exp(--qx) dq 
dQ + 

+ O( -- x) [ ~ F(q) exp( -- qx) dq 
dtd 
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on scalar fields q~ on the Minkowski space. For instance, if #F(q) is the 
Feynman propagator (11), iff" is the familiar causal Green function D '~. 
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